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Abstract

Purpose: Current guidelines for elective nodal irradiation in oropharyngeal
squamous cell carcinoma (OPSCC) recommend including large portions of the
contralateral lymphatic system in the clinical target volume (CTV-N), even for
lateralized tumors with no clinical lymph node involvement in the contralateral
neck. This study introduces a probabilistic model of bilateral lymphatic tumor
progression in OPSCC to estimate personalized risks of occult disease in specific
lymph node levels (LNLs) based on clinical lymph node involvement, T-stage,
and tumor lateralization.

Methods: Building on a previously developed hidden Markov model for ipsilateral
lymphatic spread, we extend the approach to contralateral neck involvement.
The model represents LNLs I, II, III, IV, V, and VII on both sides of the neck
as binary hidden variables (healthy or involved), connected via arcs representing
spread probabilities. These probabilities are learned using Markov chain Monte
Carlo (MCMC) sampling from a dataset of 833 OPSCC patients, enabling the
model to reflect the underlying lymphatic progression dynamics.
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Results: The model accurately and precisely describes observed patterns of lymph
node involvement with a compact set of interpretable parameters. Midline exten-
sion of the primary tumor is identified as the primary risk factor for contralateral
involvement, with advanced T-stage and extensive ipsilateral involvement fur-
ther increasing risk. Occult disease in contralateral LNL III is highly unlikely
if upstream LNL II is clinically negative, and in contralateral LNL IV, occult
disease is exceedingly rare without LNL III involvement.

Conclusions: This model offers an interpretable, probabilistic framework to
inform personalized elective CTV-N volume reduction. For lateralized tumors
that do not cross the midline, it suggests the contralateral neck may safely be
excluded from elective irradiation. For tumors extending across the midline but
with a clinically negative contralateral neck, elective irradiation could be limited
to LNL II, reducing unnecessary exposure of normal tissue while maintaining
regional tumor control.

Source: Article Notebook

Source: Article Notebook

1 Introduction

In head and neck squamous cell carcinomas (HNSCC) treatments with radiotherapy
or surgery, both the primary tumor and clinically detected lymph node metastases are
targeted. In addition, current guidelines include large portions of the neck in the elec-
tive clinical target volume (CTV-N) [1–8] to mitigate the risk of regional recurrences
from untreated microscopic disease undetectable by in-vivo imaging modalities such
as computed tomography (CT), magnetic resonance imaging (MRI), or positron emis-
sion tomography (PET). However, this approach must balance minimizing the risk of
occult disease in the lymphatic drainage region against the toxicity of unnecessarily
irradiating healthy tissue.
These CTV-N guidelines rely on anatomically defined lymph node levels (LNLs) [2]
and the overall prevalence of lymph node metastases within these levels. They often
recommend extensive irradiation of both sides of the neck. However, the general preva-
lence of metastasis in a given LNL does not correspond to an individual patient’s
risk of occult disease in that region, which depends on their specific state of tumor
progression. For example, a patient with no clinically detectable nodal disease (cN0)
who has a small, clearly lateralized T1 tumor would receive the same contralateral
CTV-N as a patient with significant ipsilateral nodal involvement and an advanced
tumor crossing the mid-sagittal plane. Both patients receive elective irradiation of the
contralateral LNLs II, III, and IVa [5].
To better quantify individualized risk of occult disease, we previously developed an
intuitive probabilistic hidden Markov model (HMM) [9, 10], originally based on a con-
ceptually similar a Bayesian network model [11]. However, these models have been

2

https://rmnldwg.github.io/bilateral-paper/manuscript.qmd.html
https://rmnldwg.github.io/bilateral-paper/manuscript.qmd.html


limited to predicting ipsilateral nodal involvement. This work extends the model to
include contralateral risk predictions, enabling more personalized radiation volume
recommendations for the contralateral neck. By identifying patients with low con-
tralateral risk, the model could guide reductions in the contralateral CTV-N, thereby
decreasing radiation-induced toxicity and improving quality of life.

The main contributions of this paper are as follows:

1. Section 2 presents a multi-centric dataset on lymph node involvement in 833
OPSCC patients, identifying key risk factors for contralateral lymph node involve-
ment and outlining requirements for a bilateral model extension (section 2.4).

2. Section 4 introduces a bilateral HMM that incorporates primary tumor later-
alization, T-category, and clinical involvement as risk factors for contralateral
involvement. Model training and computational experiments are described in
section 5.

3. Section 6 demonstrates the model’s ability to replicate observed contralateral
lymph node involvement patterns and estimates occult disease risk for typi-
cal patients. Implications for volume-deescalated radiotherapy are discussed in
section 8.

2 Data on Lymphatic Progression Patterns

To develop models for lymphatic tumor progression for all relevant LNLs, includ-
ing contralateral regions, we compiled a detailed dataset of 833 patients with newly
diagnosed oropharyngeal squamous cell carcinomas (OPSCC) [12, 13]. The dataset
includes lymph node involvement per LNL for each patient in tabular form, along
with primary tumor and patient characteristics such as T-category, subsite, primary
tumor lateralization, and HPV p16 status. Patient records were collected from four
institutions, and an overview of patient characteristics is provided in table 1.

Data from Inselspital Bern (ISB) and Centre Léon Bérard (CLB) consist exclusively
of patients who underwent neck dissections. In contrast, the majority of patients from
the University Hospital Zürich (USZ) and the Hospital Vall d’Hebron (HVH) were
treated with definitive radiotherapy. Since surgical treatment is more common for
early T-category patients, ISB and CLB datasets include a higher proportion of these
cases compared to USZ and HVH. For 83 patients in the CLB dataset, the primary
tumor’s lateralization was not reported.

Source: Article Notebook
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Table 1: Overview over the four datasets from four different institutions used to train
and evaluate our model. Here, we briefly characterize the total number of OPSCC
patients from the respective institution, their median age, what proportion received
neck dissection, the N0 portion of patients, what percentage presented with early T-
category (T1/T2), and the prevalence of primary tumor midline extension. For a much
more detailed look at the data, visit lyprox.org.

Table 1

Institution Total Age (median) Neck Dissection N0 Early T-Cat. Mid. Ext.
Centre Léon Bérard 325 60 100% 19% 69% 18%
Inselspital Bern 74 61 100% 18% 66% 14%
University Hospital Zurich 287 66 26% 18% 52% 31%
Vall d'Hebron Barcelona Hospital 147 58 5% 21% 34% 34%

Source: Article Notebook

2.1 Consensus on Involvement Status

Pathological involvement is available only for surgically treated patients and for the
levels that were dissected. For non-surgical patients, involvement status is determined
clinically, i.e. using imaging. For this work, diagnostic information was synthesized
into a consensus decision for each patient and LNL. This consensus reflects the most
likely state of involvement and accounts for the sensitivity and specificity of various
diagnostic modalities, as reported in the literature [14, 15].
The consensus process is detailed in section 10. Briefly, pathological findings from
neck dissections are treated as the gold standard, overriding any conflicting clini-
cal diagnoses. For levels not dissected, PET-CT is typically the primary source for
determining the most likely state of involvement.

2.2 Data Availability

The complete dataset, including additional patients with tumors in primary sites
other than the oropharynx, is publicly accessible. It can be downloaded from LyProX,
where it is also available for interactive exploration, from GitHub, or from Zenodo.
Additional details about the datasets and data format are provided in designated
Data-in-Brief publications [12, 13]. These publications do not include the latest data
from HVH, which will be described in a future publication.

2.3 Patterns of Contralateral Involvement

The datasets enable analysis of correlations between contralateral LNL involvement
and key risk factors. In figure 1, we illustrate the prevalence of contralateral LNL
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involvement, stratified by T-category, the number of ipsilaterally involved LNLs, and
whether the tumor extends across the mid-sagittal plane.

Figure 1: Contralateral involvement stratified by T-category (top left panel), the
number of metastatic LNLs ipsilaterally (top right panel), and whether the primary
tumor extended over the mid-sagittal plane or was clearly lateralized (bottom left
panel). In the bottom right panel, we consider lateralized tumors only, and compare
the contralateral involvement prevalence for selected scenarios that vary in their T-
category and ipsilateral involvement extent.

2.3.1 Midline Extension

The bottom left panel of figure 1 shows that tumors crossing the mid-sagittal
plane have a substantially higher prevalence of contralateral involvement compared
to clearly lateralized tumors. This aligns with the anatomy of the head and neck
lymphatic system, which is symmetric, with no major lymph vessels crossing the
midline. Interstitial fluids from the primary tumor, presumed to carry malignant
cells, can merely diffuse to contralateral lymphatic vessels over short distances. Thus,
contralateral spread is more likely when the tumor approaches or crosses the midline.

2.3.2 T-Category

The top left panel shows a correlation between T-category and contralateral involve-
ment, reflecting T-category’s role as a surrogate for the time elapsed between disease
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onset and diagnosis. Advanced T-category tumors (e.g., T4) generally represent a
longer disease progression timeline, providing more opportunity for metastatic spread
compared to smaller tumors (e.g., T1).

2.3.3 Ipsilateral Involvement

The top right panel reveals a positive correlation between ipsilateral and contralateral
metastases. Extensive ipsilateral involvement likely indicates a longer or faster disease
progression. Additionally, it has been hypothesized that bulky ipsilateral nodal disease
may reroute lymphatic drainage toward the contralateral side, potentially increasing
the probability of contralateral metastasis.

2.3.4 Correlation of Risk Factors

Midline extension, T-category, and ipsilateral involvement are interrelated risk fac-
tors for contralateral metastasis. For instance, 45.6% of advanced T-category tumors
exhibit midline extension compared to 6.1% of early T-category tumors. While
the higher fraction of midline extensions in advanced T-category patients partially
explains the higher contralateral metastasis rates, T-category itself and ipsilateral
involvement also play an additional role.

The bottom right panel of figure 1 considers only patients with lateralized tumors that
do not cross the midline. Among early T-category patients with no ipsilateral nodal
involvement (levels I-V), only 1.2% (1 of 86 patients) show involvement in contralateral
level II. This proportion increases to 8.8% (24 of 272) if ipsilateral level II is involved,
to 15.7% (14 of 89) if ipsilateral levels II and III are involved, and further to 22.2%
(12 of 54) for advanced T-category tumors with ipsilateral levels II and III involved.

2.4 Requirements for a Bilateral Model

Based on the observations in section 2.3 above, any model predicting the risk of
contralateral nodal involvement should account for the following:

1. Midline Extension: Tumors extending across the mid-sagittal plane should result
in a significantly higher probability of contralateral metastases.

2. T-Category: Advanced T-category should correspond to an increased risk of nodal
disease. In the hidden Markov model this can be modeled using the expected time
of diagnosis, as demonstrated previously for the ipsilateral model [9].

3. Ipsilateral Involvement: The model should be able to capture the correla-
tion between the extent of ipsi- and contralateral involvement. I.e., a more severe
ipsilateral involvement should indicate a higher risk for contralateral metastases.
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3 Unilateral Model for Lymphatic Progression

This paper builds on the previously developed unilateral model for ipsilateral lymph
node involvement presented in [16]. Below, we briefly recap the unilateral model to
introduce the notation required for extending the framework to a bilateral model,
described in section 4. For further details on the ipsilateral model, we refer to earlier
publications [9, 16].
We represent a patient’s state of involvement at an abstract time-step 𝑡 as a vector of
hidden binary random variables, where each component corresponds to a lymph node
level (LNL):

X[𝑡] = (𝑋𝑣[𝑡]) 𝑣 ∈ {1, 2, … , 𝑉 } (1)

Here, 𝑉 is the number of LNLs the model considers. The values a LNL may take on
are 𝑋𝑣[𝑡] = 0 (False), meaning the LNL 𝑣 is free of metastatic disease, or 𝑋𝑣[𝑡] = 1
(True), corresponding to the presence of clinically detected metastases (i.e., occult or
macroscopic disease). In total, there are 2𝑉 distinct possible lymphatic involvement
patterns, which we enumerate from 𝜉0 = (0 0 ⋯ 0) to 𝜉2𝑉 = (1 1 ⋯ 1). Each LNL’s
state is observed via another binary random variable 𝑍𝑣 that describes the clinical
involvement of a LNL based on imaging: 𝑍𝑣 = 0 (False) indicates that the LNL 𝑣
is healthy based on clinical diagnosis, and 𝑍𝑣 = 1 (True) indicates that LNL 𝑣 was
classified as involved. 𝑋𝑣 and 𝑍𝑣 are connected through the sensitivity and specificity
of the diagnositc modality.
Based on this, our HMM is fully described by defining the following three quantities:

1. A starting state X[𝑡 = 0] at time 𝑡 = 0 just before the patient’s tumor formed. In
our case, this is always the state 𝜉0 where all LNLs are still healthy.

2. The transition matrix

A = (𝐴𝑖𝑗) = (𝑃 (X[𝑡 + 1] = 𝜉𝑗 ∣ X[𝑡] = 𝜉𝑖) ) (2)

where the value at row 𝑖 and column 𝑗 represents the probability to transition from
state 𝜉𝑖 to 𝜉𝑗 during the time-step from 𝑡 to 𝑡+1. Note that we prohibit self-healing,
meaning that during a transition, no LNL may change their state from 𝑋𝑣[𝑡] = 1
to 𝑋𝑣[𝑡 + 1] = 0. Consequently, many elements of the transition matrix are zero.

3. Lastly, the observation matrix

B = (𝐵𝑖𝑗) = (𝑃 (Z = 𝜁𝑗 ∣ X[𝑡𝐷] = 𝜉𝑖) ) (3)

where in row 𝑖 and at column 𝑗 we find the probability to observe a lymphatic
involvement pattern Z = 𝜁𝑗, given that the true (but hidden) state of involvement
at the time of diagnosis 𝑡𝐷 is X[𝑡𝐷] = 𝜉𝑖.

The transition matrix A is parameterized using a directed acyclic graph (DAG) that
represents the underlying lymphatic network. Edges from the primary tumor to an
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LNL are associated with a probability 𝑏𝑣 for direct spread to LNL 𝑣 during one time
step. Arcs from a LNL 𝑣 to a LNL 𝑟 are parameterized with the probability rate 𝑡𝑣𝑟
representing the probability of spread to an LNL 𝑟 that receives efferent lymphatic
spread from LNL 𝑣. In this paper, we build on the DAG shown in figure 2 which was
obtained by maximizing the model evidence as described in [16].

T

Figure 2: Directed acyclic graph (DAG) representing the abstract lymphatic network
in the head and neck region. Blue nodes are the LNLs’ hidden random variables,
the red node represents the tumor, and the orange square nodes depict the binary
observed variables. Red and blue arcs symbolize the probability of lymphatic spread
along that edge during one time-step. The orange arcs represent the sensitivity and
specificity of the observational modality (e.g. CT, MRI, pathology, …).

Let us now consider the probability distribution over all possible hidden states X[𝑡]
at time 𝑡. We can get to this distribution by evolving the healthy starting state
X[𝑡 = 0] = 𝜉0 at time 𝑡 = 0 step by step, by successively multiplying this vector with
the transition matrix A: X[𝑡 + 1] = X[𝑡] ⋅ A. For later use, we define at this point a
matrix Λ that collects these distributions for all considered times:

Λ = 𝑃 (X ∣ t) =
⎛⎜⎜⎜
⎝

𝜋⊺ ⋅ A0

𝜋⊺ ⋅ A1

⋮
𝜋⊺ ⋅ A𝑡max

⎞⎟⎟⎟
⎠

(4)

where the 𝑘-th row in this matrix corresponds to the probability distribution over
hidden states after 𝑡 = 𝑘 − 1 time-steps.
At the time of diagnosis, 0 ≤ 𝑡𝐷 ≤ 𝑡max, we multiply the evolved state distribution
with the observation matrix B to obtain the distribution over all possible diagnoses.
However, the exact time of diagnosis, 𝑡𝐷, is unknown; that is, we do not know the
number of time-steps over which the HMM should be evolved. To address this, we
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marginalize over all possible diagnosis times, allowing the diagnosis to occur at any
time-step, albeit with different weights. These weights are defined by a prior distri-
bution over 𝑡𝐷, which can vary depending on the patient’s T-category. For example,
the time-prior for early T-category patients, 𝑃(𝑡𝐷 ∣ early), may put more weight on
earlier time-steps, reflecting – on average – earlier detection, compared to the prior
for advanced T-category patients, 𝑃(𝑡𝐷 ∣ advanced).
The probability distribution over X for the example of an early T-category patient is
given by

𝑃 (X ∣ T𝑥 = early) =
𝑡max

∑
𝑡=0

𝑃 (X ∣ 𝑡) ⋅ 𝑃 (𝑡 ∣ T𝑥 = early)

In this work, we use binomial distributions 𝔅 (𝑡𝐷, 𝑝T𝑥) as time-priors which have one
free parameter 𝑝T𝑥 for each group of patients we differentiate based on T-category.
Also, we fix 𝑡max = 10, which means that the expected number of time-steps from the
onset of a patient’s disease to their diagnosis is 𝔼 [𝑡𝐷] = 10 ⋅ 𝑝T𝑥.

3.1 Likelihood Function of the Unilateral Model

The probabiltiy for a patient to present with a diagnosis Z = 𝜁𝑖 a T-category T𝑥
tumor can now be written as:

ℓ = 𝑃 (Z = 𝜁𝑖 ∣ T𝑥) =
𝑡max

∑
𝑡=0

[𝜉0 ⋅ A𝑡 ⋅ B]𝑖 ⋅ 𝑃 (𝑡 ∣ T𝑥) (5)

here, […]𝑖 we denote the 𝑖-th component of the vector in the square brackets. Note that
it is also possible to account for missing involvement information: If a diagnosis (like
fine needle aspiration (FNA)) is only available for a subset of all LNLs, we can sum
over all those possible complete observed states 𝜁𝑗 that match the provided diagnosis.

The term above represents a single patient’s contribution to the overall likelihood
function that is a product of such terms for each patient. This single-patient likelihood
ℓ in equation 5 depends on the spread parameters shown in figure 2 via the transition
matrix A and on the binomial parameters 𝑝T𝑥 via time-priors. In this work, we will
only differentiate between “early” (T1 & T2) and “advanced” (T3 & T4) T-categories.
Therefore, the parameter space of the unilateral model is:

𝜃 = ({𝑏𝑣} , {𝑡𝑣𝑟} , 𝑝early, 𝑝adv.) with 𝑣≤𝑉
𝑟∈pa(𝑣) (6)

And it is our goal to infer optimal parameter values of from a given dataset 𝒟 (con-
sisting of diagnoses and T-categories) of OPSCC patients. The likelihood to observe
this cohort of 𝑁 patients, given a set of parameters 𝜃 is simply the product of their
individual likelihoods as defined in equation 5. For numerical reasons, we typically
compute the data likelihood in log space:
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logℒ (𝒟 ∣ 𝜃) =
𝑁

∑
𝑖=1

log ℓ𝑖 (7)

The methodology we use to infer the model’s parameters is detailed in section 5.2.

4 Extension to a Bilateral Model

A straightforward approach to modeling contralateral lymphatic spread would be to
use two independent unilateral models, as described in section 3, possibly with shared
parameters such as the distribution of diagnosis times or spread between LNLs (𝑡𝑣𝑟).
However, this method would fail to capture the correlation between ipsilateral and
contralateral involvement discussed in section 2.3, particularly the observed increase
in contralateral involvement with greater severity of ipsilateral spread.

Thus, we extend the formalism in section 3 in such a way that the model’s ipsi- and
contralateral side evolve synchronously over time. To achieve that, we start by writing
down the posterior distribution of involvement, which is now a joint probability of an
involvement Xi ipsilaterally and an involvement Xc contralaterally, given a diagnosis
of the ipsilateral LNLs Zi and of the contralateral ones Zc:

𝑃 (Xi, Xc ∣ Zi, Zc) = 𝑃 (Zi, Zc ∣ Xi, Xc) 𝑃 (Xi, Xc)
𝑃 (Zi, Zc) (8)

For the sake of brevity, we omit the dependency on the parameters and the T-category
here.

The probability of the diagnoses given a hidden state factorises: 𝑃 (Zi, Zc ∣ Xi, Xc) =
𝑃 (Zi ∣ Xi) ⋅ 𝑃 (Zc ∣ Xc), and the two factors are described through observation
matrices Bi and Bc.

The term representing the model’s prior probability of hidden involvement does not
factorize. However, we assume no direct lymphatic drainage from ipsilateral to con-
tralateral LNLs, as major lymph vessels do not cross the mid-sagittal plane. In the
graphical model, this translates to the absence of directed arcs between ipsilateral and
contralateral LNLs, implying that contralateral tumor spread occurs solely via the
primary tumor. We can thus write the joint probability 𝑃 (Xi, Xc) as a factorising
sum:

𝑃 (Xi, Xc) =
𝑡max

∑
𝑡=0

𝑃(𝑡) ⋅ 𝑃 (Xi, Xc ∣ 𝑡)

=
𝑡max

∑
𝑡=0

𝑃(𝑡) ⋅ 𝑃 (Xi ∣ 𝑡) ⋅ 𝑃 (Xc ∣ 𝑡)
(9)
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This assumption is intuitive: since no major lymph vessels cross the midline, the ipsi-
lateral and contralateral sides of the lymphatic network evolve independently over
time. However, they are indirectly coupled through time. For example, a joint state
with severe contralateral involvement and limited ipsilateral involvement is improba-
ble: Severe contralateral involvement typically occurs at later time steps, when limited
ipsilateral involvement is unlikely.

Using equation 9 along with equation 4, we can write the above distribution
algebraically as a product:

𝑃 (Xi = 𝜉𝑛, Xc = 𝜉𝑚) = [Λ⊺
i ⋅ diag𝑃(t) ⋅ Λc]

𝑛,𝑚
(10)

4.1 Parameter Symmetries

The matrices Λi and Λc could, in principle, be parameterized with entirely separate
parameters, allowing ipsilateral and contralateral spread rates to differ substantially.
However, we simplify the parameter space by sharing parameters between the two
sides, based on the following three assumptions:

1. Shared Graph Structure: Both ipsilateral and contralateral spread are described
by the same graph shown in figure 2.

2. Symmetric Spread Among LNLs: The spread among LNLs is assumed to
be the same on both sides, reflecting the symmetric structure of the lymphatic
system. Consequently, the spread rates between nodes should also be symmetric.
This is formalized as:

𝑡c
𝑟𝑣 = 𝑡i

𝑟𝑣 (11)
for all 𝑣 ≤ 𝑉 and 𝑟 ∈ pa(𝑣) being all nodes that spread to 𝑣.

3. Asymmetric Spread from Tumor: The probabilities of direct spread from the
primary tumor are clearly different for the ipsi- and contralateral neck. In addi-
tion, tumor spread to the contralateral side varies depending on whether the tumor
crosses the mid-sagittal plane. This would result in three sets of rates for tumor
spread to the LNLs: (1) the spread to ipsilateral LNLs 𝑏i

𝑣, (2) the spread to con-
tralateral LNLs as long as the tumor is lateralized 𝑏c,𝜖=False

𝑣 , (3) the spread to
contralateral LNLs when the tumor crosses the midline 𝑏c,𝜖=True

𝑣 . In this work, how-
ever, we chose to define the latter set as a linear mix of ipsilateral tumor spread and
contralateral spread in case of a clearly lateralized tumor. Thus, using 𝛼 ∈ [0, 1] as
this mixing parameter, we have

𝑏c,𝜖=True
𝑣 = 𝛼 ⋅ 𝑏i

𝑣 + (1 − 𝛼) ⋅ 𝑏c,𝜖=False
𝑣 (12)

In this way, the tumor’s midline extension causes the contralateral spread to become
more like the spread to the ipsilateral side.
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The full parameter space of this model is now:

𝜃 = ({𝑏i
𝑣} , {𝑏c

𝑣} , 𝛼, {𝑡𝑣𝑟} , 𝑝early, 𝑝adv.) with 𝑣≤𝑉
𝑟∈pa(𝑣) (13)

This results in less than a doubling of parameters compared to the unilateral model.
From these parameters, we construct three transition matrices: the unchanged Ai
for the ipsilateral side, A𝜖=False

c for contralateral progression while the tumor is
lateralized, and A𝜖=True

c for cases where the tumor crosses the mid-sagittal plane.

4.2 Modelling Midline Extension

Most tumors crossing the midline at the time of diagnosis likely began as lateralized
tumors that grew over the midline at a later point in time. As a result, the transition
matrix A𝜖=True

c applies only to a subset of time-steps.

To account for this, we model the tumor’s extension over the mid-sagittal plane as
an additional binary random variable 𝜖. A tumor starts as lateralized, with a finite
probability 𝑝𝜖 at each time step of crossing the midline. The overall probabilities of
a patient having a clearly lateralized tumor or one extending over the mid-sagittal
plane after 𝑡 time steps are then given by

𝑃(𝜖 = False ∣ 𝑡) = (1 − 𝑝𝜖)𝑡

𝑃(𝜖 = True ∣ 𝑡) = 1 − 𝑃(𝜖 = False ∣ 𝑡)

Using this, it is straightforward to write down the matrix of state distributions for
all time-steps, as in equation 4, covering the joint distribution over the contralateral
hidden state and the midline extension:

Λ𝜖=False
c =

⎛⎜⎜⎜⎜⎜
⎝

𝜋⊺ ⋅ (A𝜖=False
c )0

(1 − 𝑝𝜖) ⋅ 𝜋⊺ ⋅ (A𝜖=False
c )1

⋮
(1 − 𝑝𝜖)𝑡max ⋅ 𝜋⊺ ⋅ (A𝜖=False

c )𝑡max

⎞⎟⎟⎟⎟⎟
⎠

here, we used the transition matrix A𝜖=False
c that depends on the base spread

parameters 𝑏c,𝜖=False
𝑣 .

The case of midline extension is more complex: we already marginalize over the exact
time step when the tumor grows over the mid-sagittal plane. However, at the point of
crossing, the contralateral transition matrix must switch to the increased spread rates,
𝑏c,𝜖=True

𝑣 , as defined by the linear mixing in equation 12. To correctly perform this
marginalization, we iteratively construct the joint distribution 𝑃 (Xc, 𝜖 = True ∣ 𝑡).
We begin at 𝑡 = 0, where all contralateral LNLs are healthy (i.e., Xc = 𝜉0) and the
tumor is lateralized (𝜖 = False):
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𝑃 (Xc = 𝜉0, 𝜖 = False ∣ 𝑡 = 0) = 1

while all other states have zero probability.

At some later time step 𝑡 = 𝜏 + 1, there are two scenarios to marginalize over:

1. The tumor was lateralized at 𝑡 = 𝜏 and grew over the midline at 𝑡 = 𝜏 +1:
In this case, the probability of midline extension at 𝑡 = 𝜏 +1 is 𝑝𝜖. This probability
weights the contralateral state distribution that had previously evolved without
increased contralateral spread.

2. The tumor had already crossed the midline before 𝑡 = 𝜏 :
Here, the tumor remains in the midline-crossed state with probability 1. To account
for this scenario, we simply include the distribution 𝑃 (Xc, 𝜖 = True ∣ 𝜏) from the
previous time step.

Combining these scenarios leads to a recursive formulation:

𝑃 (Xc, 𝜖 = True ∣ 𝜏 + 1)
= [𝑝𝜖𝑃 (Xc, 𝜖 = False ∣ 𝜏) + 𝑃 (Xc, 𝜖 = True ∣ 𝜏) ]⊤ ⋅ A𝜖=True

c

We can collect the iteratively computed distributions for the midline extension case
to define the matrix over the states given all time-steps, as in equation 4:

Λ𝜖=True
c =

⎛⎜⎜⎜
⎝

𝑃 (Xc, 𝜖 = True ∣ 0)
𝑃 (Xc, 𝜖 = True ∣ 1)

⋮
𝑃 (Xc, 𝜖 = True ∣ 𝑡max)

⎞⎟⎟⎟
⎠

In analogy to equation 10, we can now write the joint distribution of ipsi- and
contralateral involvement and midline extension algebraically:

𝑃 (Xi = 𝜉𝑛, Xc = 𝜉𝑚, 𝜖) = [Λ⊺
i ⋅ diag𝑃(t) ⋅ Λ𝜖

c]
𝑛,𝑚

(14)

With the above, we compute the likelihood of all patients with and without midline
extension separately. And if for some patients the information of tumor lateralization is
not available, we can simply marginalize over the unknown variable 𝜖 ∈ {False, True}.
The final parameter space of our extended model has now reached this size:

𝜃 = ({𝑏i
𝑣} , {𝑏c

𝑣} , 𝛼, {𝑡𝑣𝑟} , 𝑝early, 𝑝adv., 𝑝𝜖) with 𝑣≤𝑉
𝑟∈pa(𝑣) (15)
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4.3 Model Prediction in the Bayesian Context

Our stated goal is to compute the risk for a patient’s true ipsi- and contralateral nodal
involvement states Xi and Xc, given their individual diagnosis 𝑑 = (𝜁i

𝑘, 𝜁c
ℓ, 𝜖,T𝑥).

Here, this diagnosis consists of the observed ipsi- and contralateral nodal involvements,
the patient’s midline extension 𝜖, and their tumor’s T-category T𝑥. Using Bayes’ law,
we can write this risk as:

𝑃(Xi, Xc ∣ 𝑑, ̂𝜃) =
𝑃 (𝜁i

𝑘 ∣ Xi) 𝑃 (𝜁c
ℓ ∣ Xc) 𝑃(Xi, Xc, 𝜖 ∣ ̂𝜃,T𝑥)

∑2𝑉

𝑖=0 ∑2𝑉

𝑗=0 𝒞𝑖𝑗
(16)

with the normalization constants

𝒞𝑖𝑗 = 𝑃 (𝜁i
𝑘 ∣ Xi = 𝜉i

𝑖) 𝑃(𝜁c
ℓ ∣ Xc = 𝜉c

𝑗)𝑃(Xi = 𝜉i
𝑖, Xc = 𝜉c

𝑗, 𝜖 ∣ ̂𝜃,T𝑥)

The terms 𝑃 (𝜁i
𝑘 ∣ Xi) and 𝑃 (𝜁c

ℓ ∣ Xc) are defined solely by sensitivity and specificity
of the diagnostic modality. These terms already appeared in the definition of the
observation matrx in equation 3. The prior 𝑃(Xi, Xc, 𝜖 ∣ ̂𝜃,T𝑥) in the above equation
is the crucial term that is supplied by a trained model and its parameters ̂𝜃.
It is possible to compute this posterior probability of true involvement not only for
one fully defined state (Xi, Xc), but also for e.g. individual LNLs: For example, the
risk for involvement in the contralateral level IV would be a marginalization over all
combination of ipsi- states 𝜉i

𝑖 contralateral states 𝜉c
𝑗 where 𝜉c

𝑗4 = 1. Formally:

𝑃(IVc ∣ Zi = 𝜁i
𝑘, Zc = 𝜁c

ℓ, ̂𝜃,T𝑥)
= ∑

𝑘
∑

ℓ ∶ 𝜉ℓ4=1
𝑃 (Xi = 𝜉i

𝑘, Xc = 𝜉c
ℓ ∣ 𝜁i

𝑘, 𝜁c
ℓ, 𝜖, ̂𝜃,T𝑥) (17)

5 Computational Methods

This section details the experimental setup. All figures, tables, and results are fully
reproducible via the GitHub repository rmnldwg/bilateral-paper.

5.1 Training Data

We trained the model using the dataset of 833 patients described in section 2. The
consensus decision on lymphatic involvement is assumed to correspond to the true
hidden state of involvement X. Patients with T1 and T2 category tumors have been
grouped into an “early” T-category group, those with T3 and T4 tumors into the
“advanced” T-category group.
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5.2 MCMC Sampling

We used the Python package emcee [17] for parameter inference, implementing
efficient MCMC sampling with parallel affine-invariant samplers. The sampling algo-
rithms employed differential evolution moves [18, 19], with the likelihood implemented
by our lymph-model Python package.

We initialized 12 parallel samplers (“walkers”) with random values from the unit
cube, effectively representing a uniform prior distribution over the model parameters.
Convergence was determined by two criteria:

1. The change in autocorrelation time was less than 5.0e-2.
2. The autocorrelation estimate dropped below 𝑛 / 50, where 𝑛 is the chain length.

Earlier autocorrelation estimates might not be trustworthy.

Samples from this burn-in phase before convergence were discarded. After that, we
drew 10 additional samples, spaced 10 steps apart.

We verified sampling convergence in figure 3 by examining the MCMC chain’s
autocorrelation time and walker acceptance fractions.

Figure 3: Burn-in phase monitoring of MCMC sampling. Left: Estimated autocorre-
lation time, indicating converging when stable and below the trust threshold. Right:
Average acceptance fraction of parallel walkers, with ~30% indicating good mixing.

5.3 Comparing the Observed and Predicted Prevalence of
Involvement Patterns

We evaluate the model’s ability to describe the observed frequencies of lymphatic
involvement patterns. We compare the prevalence of selected involvement patterns in
the data to the model’s predicted prevalence, given patient scenarios. A “scenario”
includes the patient’s T-category T𝑥 and whether the tumor extended over the mid-
sagittal plane, i.e. 𝜖 = True or 𝜖 = False. An involvement pattern specifies all ipsi-
and contralateral LNLs’ status as “healthy”, “involved”, or “masked” (ignored).
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For example, in figure 7 (top left panel) we assess contralateral LNL II involvement
prevalence for early T-category (T0-T2) and no midline extension (𝜖 = False). In the
data, 𝑛 = 379 such patients were observed, with 𝑘 = 27 exhibiting contralateral LNL
II involvement – an observed prevalence of 𝑞 = 7.1%. To visualize the data prevalence,
we plot a beta posterior over 𝑞 – with a uniform beta prior – multiplied with the
binomial likelihood for 𝑘 out of 𝑛 patients, given 𝑞. The resulting distribution has its
maximum at 𝑞 = 𝑘/𝑛 and nicely captures the statistical uncertainty in the observed
cohort: In the top right panel of figure 7, we consider the case of early T-category
tumors extending over the midline. The dataset contains only 29 such patients, out
of which 6 had contralateral LNL II involvement. Consequently, the beta distribution
over the observed prevalence is much wider.

The model’s predicted prevalence to compare it with is computed as:

𝑃 (IIc ∣ 𝜖 = False,T𝑥 = early)

=
∑𝑘 ∑ℓ ∶ 𝜉ℓ2=1 𝑃 (Xi = 𝜉i

𝑘, Xc = 𝜉c
ℓ, 𝜖 = False ∣ T𝑥 = early)

∑𝑘 ∑ℓ 𝑃 (Xi = 𝜉i
𝑘, Xc = 𝜉c

ℓ, 𝜖 = False ∣ T𝑥 = early)

In the enumator, we marginalize over all combinations of states in both sides of the
neck where the contralateral LNL II is involved. This is similar to the marginalization
in equation 17, although we are summing over different quantities. In the denomi-
nator, we simply sum out all LNL involvement, leaving only the joint distribution
over midline extension and diagnose time 𝑃 (𝜖, 𝑡) marginalized over 𝑡 using the early
T-category’s time-prior.

We display model predictions as histograms, each value computed from one of the
MCMC samples. Ideally, these approximate the location and width of the beta
posteriors from the data showing an accurate and precise fit.

Note that we omit the y-axis in these figures, as their numerical value is not intuitively
interpretable. We instead use the free space to label e.g. rows in an array of subplots.

6 Results: Model evaluation

In table 2, we tabulate the mean and standard deviation of the sampled parame-
ters. The bilateral model mostly reproduces the ipsilateral spread parameter values
reported in the earlier publication on the unilateral model [10]. Any discrepancies may
be due to differences in the patient cohorts. Therefore, we omit the analysis of the ipsi-
lateral spread patterns and focus instead on the analysis of contralateral involvement.
The small contralateral spread parameters 𝑏𝑐

𝑣 compared to the ipsilateral parameters
𝑏𝑖

𝑣 adequately reflect the low prevalence of contralateral lymph node involvement for
lateralized tumors. The mixing parameter 𝛼 (33.9%) describes that the probability of
contralateral spread is higher for tumors extending over the mid-sagittal plane, but
still lower than the probability for ipsilateral spread.
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The high value of 𝑡23 (14.2%) compared to the value of 𝑏i
3 (5.5%) shows that the

ipsilateral LNL III is rarely involved without the upstream involvement of LNL II.

Source: Article Notebook

Table 2: Mean sampled parameter estimates of the midline model and the respective
standard deviation. The parameters set to fixed values are the maximum number of
time steps 𝑡𝑚𝑎𝑥 = 10 and the time prior parameter for early T-category patients
𝑝𝑒𝑎𝑟𝑙𝑦 = 0.3.

Table 2

Parameter Mean Std. Dev.
Mid. ext. probability 8.16% ± 0.48%
ipsi: T � I 2.80% ± 0.26%
ipsi: T � II 34.89% ± 1.40%
ipsi: T � III 5.45% ± 0.66%
ipsi: T � IV 0.94% ± 0.18%
ipsi: T � V 1.83% ± 0.22%
ipsi: T � VII 2.32% ± 0.26%
contra: T � I 0.29% ± 0.09%
contra: T � II 2.46% ± 0.29%
contra: T � III 0.14% ± 0.07%
contra: T � IV 0.19% ± 0.08%
contra: T � V 0.05% ± 0.04%
contra: T � VII 0.50% ± 0.17%
Mixing � 33.87% ± 4.32%
I � II 62.50% ± 16.69%
II � III 14.23% ± 1.64%
III � IV 15.86% ± 1.93%
IV � V 14.58% ± 3.76%
late T-cat. binom. prob. 44.98% ± 1.99%

Source: Article Notebook

6.1 Illustration of the model

In this subsection, we illustrate key aspects of the mathematical framework intro-
duced earlier. The top panel of figure 4 shows the prior distribution over diagnosis
times, 𝑃 (𝑡). Based on the parameterization, early T-category tumors are on average
diagnosed after 3 time steps, while advanced T-category tumors are diagnosed later,
averaging 4.5 time steps. This is due to the learned value of 𝑝adv., which is 45% for
advanced T-category tumors. The tumor’s average probability per time step of grow-
ing over the midline, 𝑝𝜖, was found to be 8.2%. Using this value, the conditional
probability of midline extension, 𝑃(𝜖 ∣ 𝑡), can be computed for a given time step 𝑡
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(red line in the top panel of figure 4). The bottom panel visualizes the joint probabil-
ity 𝑃(𝜖, 𝑡), showing the likelihood of diagnosis at time 𝑡 with specific states of midline
extension and T-category.

Figure 4: The top panel shows the prior probability to be diagnosed at time step 𝑡
for early and late T-category tumors as bars. The conditional probability of midline
extension (𝜖 = True) given time step 𝑡 is shown as a line plot. The bottom panel
illustrates the joint probability of being diagnosed at time 𝑡 and having a tumor that
crosses the midline.

The framework models the joint probability distribution of midline extension and ipsi-
and contralateral lymph node involvement, 𝑃 (Xi, Xc, 𝜖). This is visualized in figure 5,
which represents the calculation defined in equation 14. To simplify the interpretation,
the example focuses only on LNLs II, III, and IV, reducing the state space to 23 = 8
possible states per side, and 2 × 8 × 8 = 128 states in total. LNLs I, V, and VII are
excluded, along with their spread parameters, while remaining parameters are set to
their mean values from table 2.

The left matrix in figure 5 shows the time evolution of the probability distribution
over the ipsilateral involvement states, starting from the healthy state [0, 0, 0]. The
two right matrices show the contralateral state evolution, distinguishing between the
cases of midline extension and no midline extension. At 𝑡 = 0, the contralateral neck
begins in the healthy state [0, 0, 0] without midline extension. The central matrix
shows the time prior for late T-category tumors. The matrix multiplication results in
the joint distribution 𝑃 (Xi, Xc), visualized in figure 6.
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Figure 5: Visual representation of equation 14. The left and right matrices represent
the time evolution of hidden states for the ipsi- and contralateral necks, respectively.
The right matrices distinguish between the cases of no midline extension (top) and
midline extension (bottom). The central diagonal matrix shows the time-prior for
late T-category tumors. This computation yields the joint distribution 𝑃 (Xi, Xc, 𝜖),
visualized in figure 6.

This joint distribution is presented as two heatmaps, corresponding to the two states
of midline extension. The most likely state is a lateralized tumor with ipsilateral
level II involvement and no contralateral involvement, having a probability of approx-
imately 25%. The next most probable state is a lateralized tumor with ipsilateral
levels II and III involved, but without contralateral involvement. The most likely
state with contralateral involvement corresponds to tumors with midline extension,
showing involvement of contralateral level II and ipsilateral levels II and III.

6.2 Prevalence predictions for contralateral involvement

The bilateral model was designed to meet the requirements outlined in section 2.4.
Here, we evaluate the model’s ability to quantitatively capture the observed patterns
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Figure 6: The joint distribution 𝑃 (Xi, Xc) over ipsi- and contralateral states and
midline extension for late T-category tumors. The distribution is shown as two sep-
arate heatmaps for the two binary values of the midline extension variable 𝜖. These
matrices are the result of equation 14, visualized in figure 5.

of lymph node involvement in the dataset. Specifically, we compare the model’s pre-
dictions for contralateral involvement to the observed data across scenarios that vary
by T-category, midline extension, and ipsilateral involvement.

6.2.1 Dependence of Contralateral Involvement on T-Category and
Midline Extension

In figure 7, we compare the prevalence of contralateral involvement for LNLs II, III,
and IV.

Figure 7 demonstrates the model’s ability to account for the risk factors T-category
and midline extension. Consistent with the data, the model predicts that the
prevalence of contralateral LNL II involvement increases from 7.1% for early T-
category lateralized tumors to 39.2% for advanced T-category tumors that cross
the midline. Similarly, contralateral LNL III involvement rises from around 1.5%
for early T-category lateralized tumors to nearly 14.2% for advanced T-category
midline-extending tumors.

6.2.2 Influence of Upstream Involvement on Contralateral Metastasis

Figure 8 highlights the influence of upstream LNL II involvement on contralateral LNL
III metastasis. The contralateral LNL III rarely harbors metastases when its upstream
LNL II is healthy, a correlation well-captured by the model. Out of 164 patients with
an advanced tumor crossing the midline and involvement in the upstream LNL II, 19
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Figure 7: Comparison of predicted (histograms) vs observed (beta posteriors) preva-
lences, shown for the contralateral LNLs II (blue), III (orange), and IV (green). The
top row shows scenarios with early T-category tumors, the bottom row for late T-
category tumors. The left column depicts scenarios where the primary tumor is clearly
lateralized, the right column scenarios of tumors extending over the mid-sagittal plane.
This figure illustrates the model’s ability to describe the prevalence of involvement
for different combinations of the risk factors T-category and midline extension.

Figure 8: The influence of the upstream LNL II’s involvement on the prevalence of
contralateral level III for the four combinations of tumor lateralization (lateralized or
extending over midline) and T-category (early or advanced). Our model predictions
(histograms) are plotted against the observations in the data (beta posteriors).
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had involvement in the contralateral LNL III. In contrast, out of 379 patients with
a clearly lateralized early T-category tumor and no upstream involvement, only 1
showed contralateral LNL III involvement. This is well captured by our model.

6.2.3 Correlation between Ipsi- and Contralateral Involvement

Figure 9: Comparison of the computed and observed prevalences for scenarios that
illustrate the model’s capability of accounting for the correlation between ipsi- and
contralateral involvement. We show three scenarios where we consider the joint
involvement of contralateral LNL II together with different ipsilateral involvements:
1) the ipsilateral neck shows no involvement in green (LNLs I to V are healthy, LNL
VII is unspecified because data on it is missing for some patients), 2) where ipsilateral
LNL II is involved in orange (LNLs I, III, IV, and V are healthy), and 3) where ipsilat-
eral LNLs II and III are involved in red (LNLs I, IV, and V are healthy). These three
scenarios are plotted for all combinations of T-category (early in top row, advanced
in bottom row) and tumor lateralization (lateralized in left column, extending over
mid-sagittal plane in the right column).

In figure 9, the model’s ability to capture the correlation between ipsi- and contralat-
eral involvement is demonstrated. The marginals of the joint distribution highlight
contralateral LNL II involvement alongside varying ipsilateral LNL involvement states.
Despite having no direct connections between the two sides, the model successfully
predicts these correlations, which arise purely through the shared diagnosis time.

For example, the model accurately predicts that contralateral LNL II involvement is
rare when the ipsilateral neck is completely healthy (green histograms). However, if
ipsilateral LNL II is involved, contralateral involvement becomes more likely. Notably,
the model achieves this without specific parameters to quantify ipsi-contralateral
correlations, relying instead on the inherent structure of the time-dependent dynamics.
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7 Results: Prediction of Risk for Occult Disease

For clinical applications, the model needs to estimate the risk of occult metastases in
clinically negative LNLs based on a patient’s diagnosis. The diagnosis includes the T-
category, tumor lateralization, and the clinically detected involvement of LNLs based
on imaging and possibly fine needle aspiration (FNA).
We assume imaging detects lymph node involvement with a sensitivity of 81% and a
specificity of 76% [14], while FNA has a sensitivity of 80% and a specificity of 98%.
This implies that FNA-confirmed involvement is highly reliable, with almost no false
positives.

Figure 10: Histograms over the predicted risk of occult involvement in contralateral
LNL II (top), III (middle), and IV (bottom), shown for various combinations of T-
category, tumor lateralization, and clinical LNL diagnoses. All LNLs not explicitly
mentioned in the legend, including the LNL for which the risk of occult disease was
computed, were assumed to be clinically negative (specificity 76%, sensitivity 81%).

7.1 Contralateral LNL II

The predicted risk of occult disease in contralateral LNL II is shown in the left panel
of figure 10. Tumor lateralization is the strongest determinant of risk:

• A patient with a lateralized early T-category tumor and ipsilateral LNL II involve-
ment has a predicted risk of 1.6% for occult contralateral LNL II disease (green
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histogram).

• For an early T-category tumor that extends over the midline, with ipsilateral LNL
II involved, the risk increases to 7.6% (orange histogram).

Advanced T-category further increases risk but has less impact than midline extension.
For instance:

• An early T-category tumor crossing the midline with ipsilateral involvement of
LNLs II and III has a 9.1% risk of contralateral LNL II disease (red histogram).

• For the same scenario but an advanced T-category tumor, the risk rises to 11.3%
(purple histogram).

The degree of ipsilateral involvement also influences risk. For a midline-extending
early T-category tumor, and a clinically N0 ipsilateral neck, the predicted risk is 7.6%.
This increases to 9.1% when LNLs II and III are involved.
In summary, midline extension is the primary risk factor for contralateral LNL
II involvement, but advanced T-category and extensive ipsilateral involvement also
contribute.

7.2 Contralateral LNL III

As shown in the center panel of figure 10, the risk of occult contralateral LNL III
involvement rarely exceeds 5% and depends strongly on upstream LNL II involvement:

• For an advanced T-category tumor extending over the midline and with extensive
clinical involvement in the ipsilateral LNLs II, III, and IV, but a clinically negative
contralateral neck, the risk is only 2.1% (green histogram).

• If contralateral LNL II is clinically involved, the risk for contralateral LNL III rises
to 4.8% (blue histogram).

• When contralateral LNL II involvement is confirmed by FNA, the risk further
increases to 6.9% (red histogram).

Even for lateralized tumors, FNA-confirmed involvement in contralateral LNL II pre-
dicts a 5.6% risk for LNL III involvement (orange histogram). This highlights the
importance of upstream LNL II involvement in determining the risk for LNL III.

7.3 Contralateral LNL IV

For contralateral LNL IV, the predicted risk is below 1% in most scenarios, even for
advanced T-category tumors extending over the midline with extensive ipsilateral and
contralateral involvement (green histogram).
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• If contralateral LNL III is also clinically involved, the risk increases to 2.8% (blue
histogram).

• When contralateral LNL III involvement is confirmed by FNA, the risk rises
significantly to 5.7% (orange histogram).

This higher risk occurs because FNA confirmation eliminates the possibility of false-
positive diagnoses for contralateral LNL III, strongly increasing the likelihood of
downstream LNL IV involvement.

7.4 Contralateral LNLs I, V, and VII

Contralateral LNLs I, V, and VII show very low predicted risks for occult disease.
Even in advanced T-category tumors extending over the midline with extensive ipsi-
and contralateral involvement, the risk for LNLs I and VII remains below 3%.

For contralateral LNL V, the risk is very small unless there is severe contralateral
involvement, including LNL IV, confirmed by FNA. In the extreme case of advanced
T-category tumors extending over the mid-sagittal plane, with all ipsilateral LNLs,
as well as contralateral LNLs II, III, and IV involved, the risk increases only to 5.5%.

8 Discussion

8.1 Summary

This work introduces a formalism to model ipsi- and contralateral lymph node involve-
ment in oropharyngeal SCC patients. Building on a previously developed ipsilateral
model [9, 10], we extend it to the contralateral side while preserving the original
model’s structure. Our extension is both intuitive and interpretable, with parameters
learned from a dataset of 833 patients across four institutions. The model uses clin-
ically diagnosed LNL involvement, tumor T-category, and lateralization to provide
personalized risk predictions for occult disease in any LNL of interest.

The model is highly interpretable, with each parameter having a clear, intuitive expla-
nation. Despite its relatively few parameters, it adequately describes the observed
data on ipsilateral and contralateral nodal involvement. To our knowledge, this repre-
sents the most comprehensive model of lymphatic tumor progression in oropharyngeal
SCC, surpassing prior efforts, which were conceptually different, limited in scope, or
not trained on real patient data [20, 21]. The underlying dataset and code are publicly
available, supporting reproducibility and further development.
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8.2 Implications for Contralateral Elective Nodal Treatment

Based on a 5% acceptable risk threshold for occult disease in a LNL, the model
recommends the following approach for contralateral elective irradiation, assuming
the respective LNL is clinically healthy:

• Lateralized tumors with no contralateral clinical involvement:
Unilateral radiotherapy is sufficient, regardless of T-category or ipsilateral involve-
ment.

• Tumors extending over the midline with no contralateral clinical involve-
ment:
Elective irradiation is limited to LNL II.

• Contralateral LNL III:
Irradiate LNL III if LNL II is involved, regardless of tumor lateralization, T-
category, or ipsilateral involvement. If contralateral LNL II is clinically negative,
LNL III is not irradiated unless contralateral LNL IV is involved.

• Contralateral LNL IV:
Irradiate only when LNL III involvement is confirmed.

• Contralateral LNL V:
Elective irradiation is not recommended in almost all patients. Only in extreme
cases, such as advanced T-category tumors with midline extension and confirmed
contralateral involvement in LNLs II to IV, irradiation of LNL V may be consid-
ered.

• Contralateral LNLs I and VII:
Elective irradiation is not recommended unless these levels are clinically involved.

These recommendations align with the model results discussed in section 7, providing
a basis for refined treatment guidelines. However, they should be interpreted in light
of the limitations discussed in section 8.3 below.

The model’s predictions are already guiding a clinical trial on volume de-escalation
at the University Hospital Zurich [22].

8.3 Limitations and Future Work

8.3.1 T-Category Dependence

The model uses a single parameter, 𝑝adv., to account for differences in lymph node
involvement patterns between early and advanced T-category tumors. Advanced T-
category tumors are modeled as evolving over more time steps, while the probability
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of spread per time step, governed by the 𝑏𝑣 parameters, remains constant. While
this approach captures the overall differences between early and advanced T-category
tumors well (as seen in figure 7), it is not perfect:

• The observed differences between early and advanced T-category tumors may some-
times be greater or smaller than the model’s predictions. This has, for example,
been previously noted for ipsilateral LNL I involvement [10].

• In the context of the bilateral model, the prevalence of midline extension is overes-
timated for early T-category tumors and underestimated for advanced T-category
tumors, as discussed in section 12.

8.3.2 Sensitivity and Specificity

As noted in section 5.1 and further detailed in section 10, we assumed that the consen-
sus across diagnostic modalities reflects the true state 𝑋𝑣 of lymph node involvement.
While this assumption is reasonable for pathologically confirmed diagnoses, it is an
approximation for clinically diagnosed involvement, which cannot detect occult disease
by definition.

The model could, in principle, distinguish between pathologically confirmed and
clinically diagnosed involvement by incorporating different sensitivity and speci-
ficity values for each diagnostic modality during training. However, this was not
implemented in the current work for two reasons:

1. Simplified evaluation: This approximation allowed for direct comparison
between the observed prevalence of involvement and the model’s predictions,
enabling an evaluation of the model’s ability to describe the data with few
interpretable parameters.

2. Inconsistent literature values: Reported sensitivity and specificity values for
diagnostic modalities show inconsistencies with some observed data, complicating
their integration into the model.

Future efforts could focus on developing methods to rigorously differentiate between
pathologically confirmed and clinically diagnosed involvement.

8.3.3 Tumor Subsites

Oropharyngeal tumors occur in distinct subsites such as the base of the tongue or the
tonsils, which may exhibit slightly different lymphatic metastatic spread. Incorporat-
ing subsite-specific information into the model could enhance its predictive accuracy.
Preliminary investigations suggest that a mixture model may effectively capture these
subsite-specific spread patterns [23, 24].

This approach could also facilitate extending the model to other tumor locations, such
as the oral cavity, hypopharynx, and larynx. Including these additional tumor sites
would broaden the model’s applicability to all HNSCC patients.
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10 Consensus on most likely involvement

The consensus on the most likely involvement state of a LNL was formed as follows:
Suppose the involvement status 𝑋𝑣 of LNL 𝑣 was assessed using different diagnostic
modalities 𝒪 = {MRI,CT,pathology, …}, each characterized by their own pair of
sensitivity and specificity values 𝑠𝑜

𝑁 and 𝑠𝑜
𝑃 , with 𝑜 ∈ 𝒪. These values are tabulated

in table 3. Then we have |𝒪| observations 𝑧𝑜
𝑣 ∈ [0, 1], where 0 stands for “healthy” and

1 for “involved”. We can then compute the most likely true involvement 𝑋𝑣 using the
likelihood function

ℓ (𝑋𝑣 ∣ {𝑧𝑜
𝑣}𝑜∈𝒪) = ∏

𝑜∈𝒪
(1 − 𝑋𝑣) ⋅ [𝑧𝑜

𝑣 ⋅ (1 − 𝑠𝑜
𝑃 ) + (1 − 𝑧𝑜

𝑣) ⋅ 𝑠𝑜
𝑃 ]

+𝑋𝑣⋅ [𝑧𝑜
𝑣 ⋅ 𝑠𝑜

𝑁 + (1 − 𝑧𝑜
𝑣) ⋅ (1 − 𝑠𝑜

𝑁)]

We now assume the true state 𝑋𝑣 to take on the value 1 if ℓ (𝑋𝑣 = 1 ∣ …) >
ℓ (𝑋𝑣 = 0 ∣ …) and 0 otherwise. For example, if we have 𝑧CT

II = 0 and 𝑧MRI
II = 1 we

would compute the following likelihoods:

ℓ (𝑋II = 1 ∣ 𝑧CT
II = 0, 𝑧MRI

II = 1) = (1 − 𝑠CT
𝑁 ) ⋅ 𝑠MRI

𝑁 = 15.39%
ℓ (𝑋II = 0 ∣ 𝑧CT

II = 0, 𝑧MRI
II = 1) = 𝑠CT

𝑃 ⋅ (1 − 𝑠MRI
𝑁 ) = 14.44%

In this example, we would thus assume the true state to be involved (𝑋II = 1).
This method of computing a consensus also ensures that the pathology reports always
override any conflicting clinical diagnosis, due to pathology’s high sensitivity and
specificity.
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Table 3: Specificity and sensitivity values from the literature [14, 15].

Modality Specificity Sensitivity
CT 76% 81%
PET 86% 79%
MRI 63% 81%
FNA 98% 80%
pathology 100% 100%

11 Contralateral Prevalence of Involvement

Source: Article Notebook

Table 4: Contralateral involvement depending on whether the primary tumor extends
over the mid-sagittal plane, the T-category, and how many ipsilateral LNLs were
involved.

Table 4

T-cat. ipsi Mid. ext. I II III IV total
n % n % n % n % n

early 0 False 0 0.00 1 1.16 0 0.00 0 0.00 86
early 0 True 0 0.00 1 10.00 1 10.00 0 0.00 10
early 0 nan 0 0.00 0 0.00 0 0.00 0 0.00 12
early 1 False 1 0.53 11 5.82 2 1.06 1 0.53 189
early 1 True 1 11.11 2 22.22 0 0.00 0 0.00 9
early 1 nan 0 0.00 3 9.68 0 0.00 1 3.23 31
early � 2 False 1 0.96 15 14.42 3 2.88 3 2.88 104
early � 2 True 0 0.00 3 30.00 4 40.00 1 10.00 10
early � 2 nan 0 0.00 3 13.64 0 0.00 0 0.00 22
advanced 0 False 0 0.00 2 5.88 0 0.00 0 0.00 34
advanced 0 True 0 0.00 3 12.50 0 0.00 0 0.00 24
advanced 0 nan 0 0.00 0 0.00 0 0.00 0 0.00 3
advanced 1 False 0 0.00 3 4.55 0 0.00 0 0.00 66
advanced 1 True 1 1.64 18 29.51 5 8.20 1 1.64 61
advanced 1 nan 0 0.00 0 0.00 0 0.00 0 0.00 9
advanced � 2 False 4 5.26 16 21.05 7 9.21 4 5.26 76
advanced � 2 True 3 3.80 46 58.23 18 22.78 8 10.13 79
advanced � 2 nan 0 0.00 0 0.00 0 0.00 0 0.00 8

Source: Article Notebook
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Figure 11: Comparing the predicted (histograms) and observed (lines depicting
beta posteriors) prevalence of midline extension for early (blue) and late (orange)
T-category. While the prevalence is predicted correctly when marginalizing over T-
category, the model cannot capture the degree of separation observed in the data.
Since the tumor’s midline extension is virtually always part of the diagnosis and hence
given when predicting a patient’s risk, we do not consider this discrepancy a major
issue.

12 Prevalence of Midline Extension

In figure 11, we plot the prevalence of midline extension in the data versus our model’s
prediction. The model adjusts the parameter 𝑝𝜖 to correctly predict the overall propor-
tion of patients with midline extension, but it cannot match the large spread between
early and advanced T-category seen in the data. To achieve that, the model would
need to increase 𝑝adv. and decrease 𝑝𝜖. But since the parameter 𝑝adv. also determines
the differences in LNL involvement between early and advanced T-category, the model
does not have that freedom.

However, we do not consider this discrepancy a major limitation of the model: In a
practical application of the model we are not interested in the probability of midline
extension, as it is always possible to assess it with high certainty for the patient at
hand. That is also the reason why we initially modelled the midline extension not as
a random variable, but as a global risk factor that would have been turned on or off
from the onset of a patient’s disease evolution. This, however, lead to overly high risks
for contralateral involvement in advanced T-category patients with midline extension,
because then the model assumes an increased spread to the contralateral side from the
onset of the disease. Which is probably not true in a majority of those cases. Thus,
treating it as a random variable that only becomes true during a patient’s disease
evolution resulted in a better description of the data.

Formally, the wrong prediction of midline extension prevalence makes little differ-
ence, since it is always given: Instead of 𝑃 (Xi, Xc, 𝜖 ∣ Zi, Zc), we typically compute
𝑃 (Xi, Xc ∣ Zi, Zc, 𝜖), which does not suffer from the wrong probability of midline
extension, as the distribution over hidden states is renormalized:
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𝑃 (Xi, Xc ∣ Zi, Zc, 𝜖) = 𝑃 (Zi, Zc ∣ Xi, Xc, 𝜖) 𝑃 (Xi, Xc, 𝜖)
𝑃 (Zi, Zc, 𝜖)

Note that a distribution over 𝜖 appears both in the enumerator and the denominator,
which largely cancel each other, leaving only the midline extension’s effect on the
distribution over hidden states in the prediction.

Source: Article Notebook
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